Портфолио воспитателя детского сада
  1. Главная
  2. Занятия с детьми
  3. Играя с детьми - развивайте логику

Играя с детьми - развивайте логику

Пантелеева Анна Николаевна
Пантелеева Анна Николаевна
DOC
153
0

Современная дошкольная педагогическая наука активно исследует методы, которые помогают детям развивать логику и творческое мышление. Игры стали одним из ключевых инструментов в этом процессе. С помощью увлекательных заданий дошкольники не только обучаются, но и получают удовольствие от познания мира.

В раннем возрасте у детей формируется основа для интеллектуального развития, и важно создать условия для реализации этого потенциала. Игры, головоломки и другие развивающие материалы становятся проводниками в мир знаний. Именно через игру ребенок осваивает такие понятия, как количество, формы, пространственные отношения, что способствует не только развитию логического мышления, но и общей интеллекта.

Старшие дошкольники начинают осваивать более сложные задачи, что открывает перед ними новые горизонты. Вместе с педагогами и родителями они учатся анализировать, сравнивать, обобщать. Такие методы обогащают их жизненный опыт и способствуют гармоничному развитию личных качеств. Обучение должно проходить в призме эмоционального комфорта и веселья, что значительно повышает мотивацию детей.

Ключевыми методическими приемами в обучении являются игры с конструкторами, строительными наборами и логическими блоками. Эти материалы помогают детям познавать окружающий мир, формируя основные математические представления. Однако для достижения результата не стоит забывать о вовлечении родителей. Их поддержка и интерес значительно усиливают эффект обучения.

Всё это подчеркивает важность интеграции игр в образовательный процесс и необходимость постоянного поиска новых идей для развлечений и обучения. Основной целью остаётся развитие интереса к обучению, что может быть достигнуто лишь через радостные и захватывающие занятия.

Предпросмотр

К онсультация
"Играя с детьми - развивайте логику"


Современная дошкольная педагогическая наука и практика ставят задачи создания наиболее эффективных условий для улучшения закономерности развития творчества в дошкольном возрасте. Особое значение приобретают вопросы формирования интеллектуальных умений и творческого воображения.
Старшим дошкольникам доступно более разностороннее знакомство с окружающими их предметами, анализ этих предметов становится не только глубже и тоньше, он идёт в разных направлениях. Предмет рассматривается с разных сторон и в разных планах. Развитие у детей логического мышления – это движение от целого к частям и их связям, а от них снова к целому. Это характерная черта высших форм человеческого мышления. Приученные смотреть «в глубь вещей» дети, встречаясь с новым явлением, пытаются объяснить его, строят догадки, сопоставляют факты. Прогресс в развитии мышления дошкольника предполагает глубокие изменения в характере его деятельности, что связано с появлением новых познавательных мотивов – появляются такие новообразования, как интеллектуальные игры и головоломки.
Таким образом, у детей формируются новые формы интеллектуальной деятельности, которые побуждаются мотивом – научиться решать «трудные задачи». У дошкольника более высокие показатели достигаются уже не в ситуации игры, а в условиях занятий, где ребёнок начинает руководствоваться стремлениями к приобретению новых знаний о предмете. В дошкольном возрасте закладывается фундамент представлений и понятий, которые существенно влияют на умственное развитие ребёнка. Установлено, что возможности умственного развития у детей дошкольного возраста очень велики: дети могут успешно познавать не только внешние наглядные свойства предметов и явлений, но и их внутренние связи и отношения.
В период дошкольного детства формируются способности к начальным формам абстракции, обобщения, умозаключения. Однако такое познание осуществляется детьми, как правило, не в форме понятий, а в наглядно-образной форме, в процессе предметной деятельности с познаваемыми объектами.
О бучая детей обобщённым способам обследования предметов с помощью специально разработанных систем сенсорных эталонов можно значительно повысить уровень их зрительного восприятия. В результате такого обучения дети правильно воспринимают сложную форму предметов, оценивают пространственное отношение, пропорции и т.д.
Знания – это продукт определённых познавательных действий ребёнка. При формировании новых знаний необходимо и организация новых познавательных действий детей. Методы обучения рассматриваются, как способы работы педагога с детьми, с целью приобретения знаний, умений, навыков, формирования мировоззрения и развития способностей. При обучении познавательная деятельность тесно связана с практической деятельностью. В дошкольном воспитании основным мотивом учения является познавательный интерес. Именно наличие у ребёнка познавательного интереса к учению повышает эффективность процесса обучения и насыщает его положительными эмоциями.
Среди материалов предназначенных для развития творчества дошкольников, широкое распространение имеют различные виды строительных наборов, конструкторов, наборов с логическими блоками Дьенеша, цветными счётными палочками Кюизенера и разнообразных головоломок. Обучение математике детей дошкольного возраста немыслимо без использования занимательных задач, игр, развлечений. При этом роль занимательного материала определяется с учётом возрастных возможностей детей и задач всестороннего развития и воспитания.
Роль задач – активизировать умственную деятельность, уметь планировать свои действия, обдумывать их, искать ответ, проявляя при этом творчество. Такая работа активизирует мыслительную деятельность ребёнка, развивает ум, позволяет расширять, углублять математические представления, закреплять полученные знания и умения, упражнять в применении их в других видах деятельности, в новой обстановке.  
1. Палочки Кюизенера
Во всём мире широко известен дидактический материал, разработанный бельгийским математиком Х. Кюизенером. Он предназначен для обучения математике, начиная с младших групп детского сада. Палочки Кюизенера называют ещё цветными палочками, цветными числами, цветными линеечками, счётными палочками. Палочки Кюизенера как дидактическое средство в полной мере соответствует специфике и особенностям элементарных математических представлений, формируемых у дошкольников, а также их возрастным возможностям, уровню развития детского мышления, в основном наглядно – действенного и наглядно – образного, использования «чисел в цвете» позволяет развивать у дошкольников представление о числе на основе счёта и измерения. Палочки Кюизенера (цветные числа) – это набор цветных палочек сечением 1 см и длиной 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 см.
Э ти палочки представляют следующие классы чисел:
- Класс белых чисел образует число один. Он представлен белыми палочками.
- Класс красных чисел – числа кратные двум (2, 4, 8). Это палочки розового (2), красного (4), вишнёвого (8) цветов.
- Класс синих чисел – числа, кратные трём (3, 6, 9). Это палочки голубого (3), фиолетового (6), синего (9) цветов.
- Класс жёлтых чисел – числа кратные пяти (5, 10). Он представлен палочками жёлтого (5) и оранжевого (10) цвета.
- Класс чёрных чисел образует число семь. Это палочки чёрного цвета.
Используются «цветные числа» и в виде плоских полосок, окрашенных в те же цвета. Они больше по размеру (длина белой полоски 2 см), с ними легче манипулировать в процессе игры.
Палочки Кюизенера позволяют моделировать числа, свойства, отношения, зависимости между ними с помощью цвета и длины. Они вызываю живой интерес детей, развивают активность и самостоятельность в поиске способов действия с материалом, путей решения мысленных задач.
Первый этап. Палочки Кюизенера вначале используются как игровой материал. Дети играют с ними, как с обыкновенными кубиками и палочками, создают различные конфигурации. Их привлекают конкретные образцы, а также качественные характеристики материала – цвет, размер, форма. Однако уже во время игры с палочками дети открывают некоторые отношения: они замечают одинаковость длины палочек, одинаковость сечения и др. Игры, которые проводятся с детьми на этом этапе, даны в планировании на начало учебного года в старшей группе.
В торой этап. Пространственно – количественные характеристики не столь очевидны для детей, как цвет, форма, размер. Открыть их можно в совместной деятельности взрослого и ребёнка. При этом взрослый не ограничивается внешним показом и прочтением готовых конфигураций, а даёт возможность выбирать действие самому ребёнку. Тогда каждая игра будет радостным открытием нового. Ребёнок быстро научится переводить (декодировать) игру красок в числовые отношения, постигать законы загадочного мира чисел.
На данном этапе проводятся игры:
- на соответствие между цветом, длиной и числом;
- на значение чисел и их цветовых изображений;
- на элементы комбинаторики;
- на действия сложения, вычитания, умножения и деления.
С помощью игры по составлению коврика (салфетки, флажка) углубляются знания по составу чисел, определяется зависимость между длиной стороны и площадью, изучение свойств чисел натурального ряда, чётные, нечётные числа при построении вертикальных, горизонтальных и симметричных цветных лесенок.
  
2. Логические блоки Дьенеша (ЛБД)
Л огические блоки Дьенеша (ЛБД) – абстрактно – дидактическое средство, которое является наиболее эффективным пособием для подготовки мышления детей к усвоению математики. Это набор фигур, отличающихся друг от друга цветом, формой, размером, толщиной. Эти свойства можно варьировать, однако чаще всего на практике используются три цвета (красный, жёлтый, синий), четыре формы (круг, квадрат, треугольник, прямоугольник), по две характеристики величины (большой, маленький) и толщины (тонкий , толстый). ЛБД позволяют моделировать множества с заданными свойствами, например, создавать множество красных блоков, квадратных блоков и др. Блоки можно группировать, а далее и классифицировать по заданному свойству; разбивать блоки на группы по величине (большие и маленькие), цвету (красные и не красные) и др. Далее детям можно раскрыть и более сложные операции над множеством (объединение, включение, дополнение, пересечение). Освоить их помогают высказывания с использованием специальных слов: «и, или», «не», «все», «любой», «каждый» и др. Итак, играя с блоками, ребёнок приближается к пониманию сложных логических отношений между множествами. От игр с абстрактными блокам дети легко и с удовольствием переходят к играм с реальными множествами, с конкретным «жизненным» материалом.
К роме логических блоков для работы необходимы карточки (5 х 5 см), на которых условно обозначены свойства блоков (цвет, форма, размер, толщина), понадобятся и карточки с отрицанием свойств: не квадратный; не синий и т.д. Использование таких карточек позволяет развивать у детей способность к замещению и моделированию свойств, умению кодировать и декодировать информацию о них. Карточки – свойства помогают детям перейти от наглядно – образного мышления к наглядно – схематическому, а карточки с отрицанием свойств – крохотный мостик к словесно – логическому мышлению.
В процессе разнообразных действий с блоками в одном упражнении можно варьировать правила выполнения задания с учётом возможностей детей.
Первый этап. Блоки Дьенеша привлекают внимание детей прежде всего своими качественными признаками: цветом, формой, размером, толщиной. Дети сразу же выделяют их самостоятельно; группируют по этим признакам, выстраивают разнообразные структуры, но чащ художественные композиции (узоры, сюжеты). Однако уже на этом этапе поможем ребёнку выделять и обозначать свойства (кодовые карточки), а также воссоздать (моделировать) блок не только по его отдельному свойству, но и по целому объёму свойств. Детям предлагаются игры типа «Угадай цвет», «Давайте познакомимся», «Найди блок», «дружат – не дружат» и др.
Второй этап. На втором этапе дети играют на преобразование, группируют и классифицируют блоки, а также реальные предметы. В играх на группирование, играющие разбивают множества по какому – либо одному признаку (по размеру или толщине, цвету или форме) на несколько групп. Например, по толщине и по размеру блоки можно разбить только на 2 группы (тонкие и толстые, большие и маленькие), по цвету – уже на 3 группы (красные, синие и жёлтые), а по форме – на 4 группы (круглые, треугольные, квадратные, прямоугольные). Игры на классификацию сложны, но всё же доступны для детей. Так, классифицируя по двум свойствам толщине и размеру, - получают 4 класса блоков: большие и толстые; маленькие и толстые; большие и тонкие; маленькие и тонкие. Выделить и охарактеризовать получившиеся классы помогает приём, в котором круги Эйлера - Венна, уже известные по играм с обручами, моделируются с помощью шнуров.
3 . Игры – головоломки.
И гры – головоломки или геометрические конструкторы известны с незапамятных времён. Сущность игры состоит в том, чтобы воссоздать на плоскости силуэты предметов по образцу или замыслу. Набор элементов таких игр состоит из фигу полученных при разрезании по определённым правилам какой-либо геометрической фигуры: квадрата – в игре «Танграм», головоломке «Пифагор», прямоугольника – в игре «Пентамино», овала – в игре «Колумбово яйцо», круга – в играх «Вьетнамская игра», «Волшебный круг». Цель упражнений – способствовать совершенствованию практической ориентировки детей в геометрических фигурах (уметь вычленять стороны, их пропорциональное соотношение; уметь соединять фигуры с целью получения новой, располагать их в пространстве, предвидеть видоизменение фигур в связи с изменением расположения составляющих частей).
Предлагаем подготовительные игровые упражнения:

  1. Составление простых изображений (домиков, снеговиков, лодок, корабликов и т.д.) из разнообразных мозаик, комплектов геометрических фигур.

  2. Игра «Составь фигуру» (геометрическую): квадрат, треугольник, прямоугольник с разными соотношениями сторон. В игре используются равносторонние, прямоугольные, равнобедренные треугольники нескольких размеров.

Варианты игровых заданий:
- составь прямоугольник из квадратов, из прямоугольников;
- составь квадрат из прямоугольников и из квадратов;
-составь четырёхугольник из треугольников;
- составь силуэт по собственному замыслу (дом, человек, заяц, мишка и т.п.).
Дети называют вновь полученную фигуру, сосчитывают углы, стороны, показывают составляющие её геометрические фигуры. Что развивает сенсорные способности, воображение, творчество.
Знакомить детей с играми надо постепенно, важно, чтобы дети усвоили и хорошо запомнили основные правила игры: при составлении силуэтов используется весь комплект, детали геометрического конструктора при этом плотно присоединяются друг к другу. Игровая деятельность детей организуется по-разному и может осуществляться двумя путями.
Первый путь предполагает составление фигур-силуэтов из частей по расчленённому образцу. Упражнения по составлению фигур-силуэтов начинаются с рассматривания образца. Анализ расположения частей начинается с основной части (стены домика, туловища человека), после этого отмечается строение остальных. За анализом следует составление фигуры детьми и проверка выполнения – сравнение с образцом. Составление силуэтов по расчленённому образцу не вызывает у детей активной умственной деятельности, а сводится в основном к копированию. Но этот этап работы с детьми необходим для упражнений в способах соединения частей, выработки умения представлять пространственные изменения. Долго задерживаться на этом этапе не следует, достаточно составить 2-3 силуэта по образцам данного вида. В следующем этапе работы, основным является обучение детей составлению фигур по образцам контурного или силуэтного характера – не расчленённым. Воспитатель предлагает внимательно рассмотреть образец и представить, как он составлен (по расположению частей), организует детей на предположительный анализ. За зрительным и мыслительным анализом следует составление, расположение частей, что и является проверкой предположения. В случае неправильных пробных действий следует вновь вернуться к анализу образца. В дальнейшем они составляют изображения по собственному замыслу. Дошкольники придумывают и составляют интересные фигуры – силуэты, которые могут служить образцами в игре (животные, птицы, игрушки). В играх на создание силуэтов возникают условия для тренировки способности самостоятельно творчески решать интересные несложные задачи.
 
Консультация для родителей
"Учим математику дома" (6-7 лет)


«Учиться можно только весело»
Французский романист Анатоль Франс.


Н ачинать надо с воспитания у ребенка внимания, умения сравнивать и наблюдать. Подружиться ребенку с математикой помогают игры. В процессе игры дети усваивают сложные математические понятия, учатся считать, читать и писать, а в развитии этих навыков ребенку помогают самые близкие люди - его родители. Но это не только тренировка, это также и прекрасно проведенное время вместе с собственным ребенком. Однако в стремлении к знаниям важно не переусердствовать.
Самое главное - это привить ребенку интерес к познанию. Для этого занятия должны проходить в увлекательной игровой форме.
Г лавное при обучении счету вовсе не овладение вычислительными навыками, а понимание того, что означают числа и для чего они нужны. Знания его будут прочнее, если вы будете их закреплять и дома.
Стоит до школы научить ребенка различать:
- пространственное расположение предметов (вверху, внизу, справа, слева, под, над и т. д.);
- узнавать основные геометрические фигуры (круг, квадрат, прямоугольник, треугольник);
- величину предметов;
- понятия "больше", "меньше", "часть", "целое".
Форма обучения элементарным математическим представлениям - игра.
-Игра "Наоборот" (толстый - тонкий, высокий - низкий, широкий-узкий). - Игра «Пришли гости» (определение без счета равенства и неравенства двух групп предметов приемом наложения).
Использовать термины «больше», «меньше», «поровну». Обратить внимание, чтобы ребенок не пересчитывал один и тот же предмет дважды.
- Игра "Назови соседей" (взрослый называет число, а ребенок - его соседей). Например, взрослый говорит: «Два», а ребенок называет: «Один, три».
- Игра "Подели предмет" (торт на 2, 4 и т.д. частей). Показать, что целое всегда больше части.
Составление задач целесообразно ограничить сложением, вычитанием в одно действие. Пусть ребенок сам примет участие в составлении задачи. Важно научить его ставить вопрос к задаче, понимать, какой именно вопрос может быть логическим завершением условий данной задачи.
-Игра "Найди пару" (перед ребенком в ряд лежат числовые карточки, на которых нарисованы или наклеены предметы). Взрослый показывает цифру, а ребенок находит соответствующую карточку.
- Игра "Какое число пропущено?" Называется пропущенное число.
Счет в дороге. Маленькие дети очень быстро устают в транспорте, если их предоставить самим себе. Это время можно провести с пользой, если вы будете вместе с ребенком считать. Сосчитать можно проезжающие трамваи, количество пассажиров-детей, магазины или аптеки. Можно придумать каждому объект для счета: ребенок считает большие дома, а вы маленькие. У кого больше?
-Сколько вокруг машин? Обращайте внимание ребенка на то, что происходит вокруг: на прогулке, на пути в магазин и т. д. Задавайте вопросы, например: "Здесь больше мальчиков или девочек?", "Давай сосчитаем, сколько скамеек в парке", "Покажи, какое дерево высокое, а какое самое низкое", "Сколько этажей в этом доме?" И т. д.
-Мячи и пуговицы. Понятия пространственного расположения легко усваиваются в игре с мячом: мяч над головой (вверху), мяч у ног (внизу), бросим вправо, бросим влево, вперед-назад. Задание можно и усложнить: ты бросаешь мяч правой рукой к моей правой руке, а левой рукой - к моей левой. В действии малыш гораздо лучше усваивает многие важные понятия.
-Далеко ли это? Гуляя с ребенком, выберите какой-нибудь объект на недалеком от вас расстоянии, например лестницу, и сосчитайте, сколько до нее шагов. Затем выберите другой объект и также сосчитайте шаги. Сравните измеренные шагами расстояния - какое больше? Постарайтесь вместе с ребенком предположить, сколько шагов потребуется, чтобы подойти к какому-то близкому объекту.
-Угадай, сколько в какой руке.В игре могут участвовать двое и больше игроков. Ведущий берет в руки определенное количество предметов, не больше 10 (это могут быть спички, конфеты, пуговицы, камешки и т. д.), и объявляет играющим, сколько всего у него предметов. После этого за спиной раскладывает их в обе руки и просит детей угадать, сколько предметов в какой руке.
С чет на кухне. Кухня - отличное место для постижения основ математики. Ребенок может пересчитывать предметы сервировки, помогая вам накрывать на стол. Или достать из холодильника по вашей просьбе три яблока и один банан. Разнообразить задания можно до бесконечности.
-Сложи квадрат. Возьмите плотную бумагу разных цветов и вырежьте из нее квадраты одного размера - скажем, 10 х 10 см. Каждый квадрат разрежьте по заранее намеченным линиям на несколько частей. Один из квадратов можно разрезать на две части, другой - уже на три. Самый сложный вариант для малыша - набор из 5-6 частей. Теперь давайте ребенку по очереди наборы деталей, пусть он попробует восстановить из них целую фигуру.
Все это хорошо подготовит ребенка к учебе в 1-м классе школы и сделает ее интересной и познавательной.